Q-Score: A composite metric for monitoring glycemic control after therapeutic intervention

P. Augstein¹, P. Heinke², J. Reindel¹, A. Nowak¹, E. Salzsieder², W. Kerner¹

¹ Klinikum Karlsburg, Heart and Diabetes Center Karlsburg, Germany, ² Institute of Diabetes "Gerhardt Katsch", Karlsburg, Germany

Background and aims

Q-Score is a single-number composite metric for analysis of short-term glycemic control. Q-Score rises with worsening of glycemic quality recorded by continuous glucose monitoring (CGM). Here, we evaluated the suitability of Q-Score for screening of therapeutic effects.

Methods

Q-Score components are central glycemic tendency [mean sensor glucose, MSG (mmol/L)], hyperglycemia [time above range, TAR (h)], hypoglycemia [time below range, TBR (h)], intra- (Range, mmol/L) and inter-daily (MODD, mmol/L) variability.

CGM-profiles were from a non-interventional, retrospective cross-sectional study. 212 people with diabetes mellitus using intermitted CGM were enrolled to investigate Q-Score at admission vs. discharge of inpatient diabetes care. Q-Score was correlated with time in range (TIR (%)). t-Test was used one-tailed for comparison inpatient admission vs. discharge and two-sided for comparison between diabetes types.

Figure 1: Sensor glucose profiles of a participant with type 1 diabetes demonstrating glycemic control before admission vs. discharge

Results

Inpatient diabetes care resulted in significantly (p<0.001) Q-Score decrease in people with type 1 and with type 2 diabetes, respectively (Table 2). Q-Score decrease was dependent from baseline level (Fig.2, Fig. 3). Equally, TIR and GMI improved during inpatient diabetes treatment (Table 2). Accompanying Q-Score, the components MSG, Range, TAR and MODD declined significantly (p<0.001). TBR maintained stable in both diabetes types (Table 2). Q-Score was highly correlated with TIR and GMI in both diabetes types (Table 3).

Table 2: Short-term glycemic control of participants at admission vs. discharge

	Type 1			Type 2		
Parameter	Before admission	Before discharge	Change	Before admission	Before discharge	Change
Q-Score	15.5±4.8	11.8±3.5	-3.6±4.8**	11.9±4.7	8.4±3.2	-3.5±4.1**
TIR (%)	51.8±21.7	65.4±18.2	13.6±25.2**	56.6±28.1	77.1±21.7	20.4±26.9**
GMI (%)	8.5±1.9	7.3±0.9	-1.2±1.9**	8.2±2.0	6.9±1.0	-1.3±1.7**
MSG (mmol/L)	10.9±3.0	9.0±1.5	-1.9±3.5**	10.4±3.1	8.3±1.6	-2.1±2.6**
Range (mmol/L)	13.0±3.3	11.0±2.9	-1.9±4.8**	9.4±2.6	8.0±2.4	-1.4±2.6**
TAR (h)	11.0±5.5	7.8±4.4	-3.2±6.4**	10.2±6.9	5.3±5.3	-4.9±6.5**
TBR (h)	0.6±1.0	0.5±0.8	-0.05±0.9	0.2±0.5	0.2±0.6	0.03±0.8
MODD (mmol/L)	3.9±1.4	2.8±1.1	-1.0±1.6**	2.5±1.1	1.7±0.8	-0.7±1.2**

Data are Mean±SD, ** p<0.001 between inpatient admission vs. discharge, GMI = Glucose Management Indicator

Conclusion

High

Norm

Low

High

Norm

Low

Q-Score is suitable for assessment of therapeutic effects on short-term glycemic control of people with type 1 and 2 diabetes.

Table 1: Baseline characteristics of study participants

		Diabetes type	
Parameter	Type 1	Type 2	All
N	115	97	212
Sex (female/male)	59/56	50/47	109/103
Age (years)	54.1 ± 15.8	64.9 ± 9.1 **	$\textbf{59.1} \pm \textbf{14.2}$
Diabetes duration (years)	$\textbf{25.8} \pm \textbf{18.2}$	20.7 ± 11.7 *	23.5 ± 15.7
BMI (kg/m ²)	28.0 ± 5.7	35.1 ± 11.3 **	$\textbf{31.3} \pm \textbf{9.4}$
Therapy (OAD/OAD+Insulin/Insulin)	0/2/113	9/66/22 **	9/68/135
HbA1c (%) p<0.001	$\textbf{8.26} \pm \textbf{1.37}$	$\textbf{8.16} \pm \textbf{1.12}$	$\textbf{8.22} \pm \textbf{1.26}$
HbA1c (mmol/mol)	$\textbf{66.8} \pm \textbf{15.0}$	$\textbf{65.7} \pm \textbf{12.3}$	$\textbf{66.3} \pm \textbf{13.8}$
TIR (%)	52 ± 22	57 ± 28	54 ± 25
Q-Score	15.5 ± 4.8	11.9 ± 4.7 **	13.8 ± 5.1
Participants with TIR>70% (%)	26.1	37.1	31.1

Data are Mean±SD, * p<0.05, ** p<0.001 between diabetes types

Table 3: Correlation of Q-Score with other parameters for short-term glycemic control

Parameter	Type 1	Type 2	
TIR (%)	-0.865**	-0.899**	
GMI (%)	0.879**	0.929**	
HbA1c (%)	0.784**	0.775**	
** p<0.001			

Figure 3: Q-Score in participants with type1 and type 2 at admission vs.

Augstein P. et al: O-Score: development of a new metric for continuous glucose monitoring that enables stratification of antihyperglycaemic therapies. BMC Endocrine Disorders, 2015;15:22

(LINIKUM KARLSBURG HERZ- UND DIABETESZENTRUM