KLINIKUM KARLSBURG HERZ- UND DIABETESZENTRUM

Q-Score complements the TIR in the evaluation of short-term alycemic control

Petra Augstein¹, Peter Heinke², Alexandra Nowak¹, Jörg Reindel¹, Eckhard Salzsieder², Wolfgang Kerner¹ ¹Klinikum Karlsburg, Herz- und Diabeteszentrum, ²Institut für Diabetes "Gerhardt Katsch", Karlsburg

Background

The Q-Score¹ is a single-number composite metric of the quality of daily glucose profiles with a recording period of at least 3 days. It is calculated from five parameters

- Mean sensor glucose Variability Max Min in a day Time in hyperglycemia
- Time in hypoglycemia Variability from day to day

Aims

Herein, we refined the Q-Score for the screening and analysis of short-term glycemic control

Material and Methods

- Part 1: Adjustment of the Q-Score to the target range 3.9 10 mmol/L

 - Historical data; n=1562 CGM profiles, 499 women and 1063 men with type 1 (n = 48) and type 2 diabetes (n = 1514)

 - Adjustment of the hyperglycemia limit "time above target range" (TAR) from 8.9 to 10 mmol/L

 - Correlation analysis and adjustment of the formula for calculating the Q-score for the target range for euglycemia 3.9 10 mmol/l

Part 2: Observational study Outpatient care People with diabetes (PwD) using intermittent glucose scanning (isCGM) under everyday conditions

Inpatient care 275 PwD admitted for ipatient diabetes care PwD using isCGM Diabetes laboratory

- Inclusion criteria for the observational study People with diabetes mellitus: type 1, type 2 and pancreatic Glucose self-monitoring with the Freestyle Libre 2 System (isCGM) Sensor data quality > 70% CGM recording time at least 14 days

GMI

- CGM
- Glucose Management Index Intermittently scanned Continuous Glucose Monitoring with the Freestyle Libre 2 system MSG = Mean sensor glukose MODD = Mean of Daily Differences³ TIR, TAR, TBR = Times in, above and below the target range of 3.9–10.0 mmol/L

- Iffs, two, test
 Data analysis:
 Determing time to stability
 of 0.5Core, TIR, CV and 0.5Core parameters using the correlation-based meth
 derived from incremental sampling durations² between 1 and 21 recording days
 of the test of 0.95
 Stability is achieved at a minimum data duration that exceeds a coefficient of
 determination of 0.95
 Stability is achieved from n= 254 isCGM profiles ed method

Q-Score to assess glycemic control

Identification of Q-Score parameters to optimize metabolic control

- Identification of Costors parameters in the second second

Part 1:

Adjustment of the Q-Score to the target range 3.9 - 10 mmol/L

Eig. 1 Scatter plot showing the relationship of the Q-Score parameter TAR¹⁹ vs. adjusted TAR¹⁰ (A) and the Q-Score calculated with TAR³⁹ vs. TAR¹⁰ (B). Assessment Q-Score: < 4 very good, 4-6 good, 6-8.5 satisfactory, 8.5-12 still sufficient, >12 inadequate. Abbreviations: TAR¹⁹ = Time above terms to

TAR^{8,9} = Time above target range 8.9 mmol/L; TAR¹⁰ = TAR ab A в

Correlation TAR^{8,9} vs. adjusted TAR¹⁰ (r = 0.958) The Q-Score formula was adjusted to TIR 3.9 – 10 n Q-Score = 8 + (MSG-7.8)/1.7 + (Range-7.5)/2.9 + 10 mmol/L:

- Q-Score = 8 + (MSG-7.8)/1.7 + (Range-7.5)/2.9 + (TBR-0.6)/1.2 + (TAR¹⁰-3.9)/4.8 + (MODD-1.8)/0.9 The linear function between the Q-Scores using both TAR was: Q-Score¹⁰ = -0.03 + 1.00 Q-Score^{8.9} Correlation Q-Score^{8.9} × adjusted¹⁰ (=0.997) Classification using both Q-Score formulas resulted in a high comportance of Q.9.8 % (=1.54±1.5) (=0.21±1.5)
- AA concordance of 92.6 % for tested1562 CGM profiles

Q-Score to assess metabolic control

Fig. 4 Q-Score components depending on glycemic quality determined by Q-Score.

- Q-Score categories for inadequate glycemic control have significantly reduced TIR, increased TAR, CV and MSG
- ۶ With a deterioration in metabolic control TIR decreases and the
- TAR, CV and MSG increase significantly (ANOVA test).

Fig. 4 Sensor glucose profiles and demonstrating glycemic control Q301: Type 2, HbA1c 7.8 %, Q299: Type 1: HbA1c 6.6 %

zen in, P., Heinke, P., Vogt, L. *et al. BMC Endocr Disord* **15**, 22 (2015) Chandran et al. Diabetes Technol Ther 2020;22:937-942 GD et al, Diabetologia 8 (1972), 342-348 logia 8 (1972), 342-348

Table 2 Correlations of the Q-Score with other metabolic control parameters

Metabolic parameter	Type 1	Type 2	all	Significance of the increases
Fructosamine (µmol/L)	0.653	0.684	0.698	
TIR (%)	-0.896	-0,915	-0.874	<0.05
GMI (%)	0.901	0.941	0.877	
GRI (%)	0.943	0.948	0.928	
HbA1c (%)	0.795	0.807	0.742	

- The correlations of the Q-Score with TIR, GMI and fructosamine are not significantly different between both types of diabetes. Only ithe slopes of the regression lines of the relationship
- between the TIR and the Q-score are significantly different for both types of diabetes. This means that as the TIR worsens, the differences in the Q-score between the types of diabetes becom
- larger. The Q-Sore correlates highest with the GRI due to the assessment of the CGM curves by experts.

Summary

The Q-Score was adjusted to the target range of $3.9-10\ \text{mmol/L}$ and a high correlation between Q-Score 8.9 and Q-Score 10 was demonstrated. The Q-Score is stable after 13 days of CGM recording. The Q-Score is highly correlated with parameters of short-term metabolic control such as TIR, fructosamine and GMI. Q-Score is suitable for assessing short-term metabolic control and allows the identification of individual parameters that can be improved.

and CV after 14 days. > The parameters Mean, SG, Range, TAR and MODD were

stable after 11 to 13 days, TBR only after 16 days

Identification of the parameters for optimization of metabolic control

Table 3

Q-Score and its components in relation to parameters of glycemic control determined using the spective regressions

Q-Score	TIR (%)	HbA1c (%)	GRI	Mean SG (mmol/L)	Range (mmol/L)	TAR (%)	MODD (mmol/L)
6	87.3	6.6	3.9	6.5	6.4	11.2	1.4
8.5	76.5	7.1	21.3	7.8	8.0	22.0	2.0
10	70.1	7.4	31.8	8.6	8.9	28.4	2.4
12	61.4	7.8	45.8	9.6	10.1	37.0	2.8
15	48.5	8.4	66.8	11.2	12.0	49.9	3.5
18	35.5	9.0	87.8	12.8	13.8	62.8	4.3

Fig. 6 Scatterplot for Q-Score with GRI (n= 261 isCGM profiles)

- The Q-Score correlates with the GRI (r=0.928)
- A GRI<20 corresponds to a satisfactory Q-Score, a GRI<40 to an adequate Q-Score

Part 2 Observational study

Table 1 Subjec characteristics of the observational study

Parameter	Type 1	Type 2	Pancreatic	Ali
N	142	116	17	275
Sex (female/male)	66/76	57/59	4/13	127/148
Age (years)	$53.9 \pm 15., 8$	65.0 ± 9.0	57.7 ± 8.0	58.8 ± 14.0
Duration of diabetes (years)	25.5 ± 18.1	20.6 ± 11.8	11.8 ± 11.4	22.5 ± 15.7
BMI (kg/m ²)	27.6 ± 5.3	$\textbf{35.0} \pm \textbf{10.8}$	27.1 ± 5.3	$\textbf{30.7} \pm \textbf{8.9}$
Therapy (OAD/OAD+Insulin/Insulin)	0/4/138	10/77/29	0/1/16	10/82/183
HbA1c (%)	8.17 ± 1.29	$\textbf{8.17} \pm \textbf{1.22}$	$\textbf{8.04} \pm \textbf{1.38}$	8.16 ± 1.26
TIR (%)(%)	52 ± 20	57 ± 26	58 ± 20	54 ± 23
Q-Score	15.2 ± 3.0	11.8 ± 4.4	13.5 ± 4.8	13.7 ± 4.6

Type of diabetes

Results

All